Fish Community Patterns on 4 Receiving Waters 1998 - 2001

Jill Thomas and Tim Hall
National Council for Air and Stream Improvement
Northwest Aquatic Biology Facility
Anacortes, WA
May 2004

Long-Term Receiving Water Study (LTRWS):

Are there differences upstream/downstream
of mill discharges?

- > Instream monitoring
 - Fish
 - Macroinvertebrates
 - Algae
 - Water Quality
- Bioassay
- Mesocosm

Fathead minnow life cycle tests

LTRWS Locations and Start-up Dates

Analytical Methods

Multivariate Analysis

- 1. Raw assemblage data: what fish are where and how many?
- Similarity Index (Bray-Curtis).
- 3. Ordination to see relative similarities between sites (MDS).
- 4. Permutation testing to test if sites are sig. different.
- A forward/backward stepwise procedure to identify influential organisms.
- 6. Correlate the independent water quality variables with the fish patterns.

Indices

- 1. Index of biotic integrity (IBI)
- 2. Diversity Indices (Shannon's H' and Simpson's 1-λ) and evenness measurement (Pielou's J').

Willamette River:

Combined Bleached Kraft & unbleached recovered fiber 0.2% effluent at the edge of the mixing zone

Most abundant species:

- •largescale sucker (40.7%)
- •mountain whitefish (15.1%).

Boat electrofishing

•8 Sampling dates:

1998: Sept & Dec

1999: Mar, Jun, & Sept

2000: Mar, May, & Sept

•Total Catch = 2,474 fish in 31 taxa (28 species).

Willamette River: MDS

•No visible relationship between sites (buckshot).

•No significant differences between sites.

Willamette River: Summary

- No pattern of site separation.
- No significant differences between sites.
- Some seasonal temporal variations were significant, no annual differences.
- IBIs found no significant differences between sites.
- Diversity and evenness measurements (Shannon's H', Simpson's 1-λ and Pielou's J') found no significant differences between sites.

No significant difference upstream/downstream in the fish communities on the Willamette.

McKenzie River:

Unbleached kraft mill 0.6% Effluent at the edge of the mixing zone

Boat Electrofishing

- •8 Sampling dates:
 - •1998: Sept & Dec
 - •1999: Mar, Jun, & Sept
 - •2000: Mar, May, & Sept
- Total Catch = 1,720 fish in 22 taxa (17 species).

- •cutthroat trout (28.1%)
- •largescale sucker (21.4%).

McKenzie River: Multivariate Analysis

•The "upstream" sites are significantly different from the "downstream" sites.

McKenzie River: Influential Species

8 out of 22 taxa contributed 95.1% of the

community pattern.

- Salmonids:
 - Cutthroat trout,
 - mountain whitefish,
 - wild and hatchery rainbow trout, and
 - chinook salmon.
- Other:
 - largescale sucker,
 - northern pikeminnow and
 - redside shiner.
- These 8 taxa made up 95% of the total catch.

Mountain Whitefish

McKenzie River: Distribution of Influential Fish Species

Downstream

Upstream

Effluent Discharge

McKenzie River: Water Quality Analysis

- Variables fell into 3 correlated groups:
 - 1. Conductivity, TDS and Hardness.
 - 2. pH, Temperature and Total Nitrogen (TN).
 - 3. Color, Turbidity and TN.
- pH, Temperature and TN correlated 48.7% with the fish pattern.

McKenzie River: Summary

- The "upstream" sites are significantly different from the "downstream" sites.
- 8 species contributed 95.1% of the fish pattern (and comprised 95% of the catch).
- 3 water quality variables (pH, temperature and TN) correlated 48.7% with the fish pattern.
- Some seasonal temporal variations were significant; no annual differences.
- IBIs, diversity and evenness measurements found almost no significant differences between sites.

Upstream-Downstream break in fish communities correlated with non-effluent specific water components, what else is driving this pattern?

Leaf River:

- Bleached Kraft Mill
- Effluent 4.0% at edge of mixing zone
 - Sampling dates:
 - •Boat 2 dates: October, 1999 & 2000
 - Backpack 1 date: October 2000
 - •Total Catch = 3,244 fish:
 - 2,050 fish in 37 species with boat;
 - •1,194 fish in 19 species with backpack equipment.

Most abundant Boat species:

- •longear sunfish (17.4%)
- •blacktail shiner (12.6%).

Most abundant Backpack species:

- •blacktail shiner (53.7%)
- •longnose shiner (19.4%).

Leaf River: Multivariate Analysis

- Visual separation between upstream sites and downstream sites for boat and backpack populations.
- Pattern is not stat. significant.
- Possibly due to low sample number, missing data and the large annual variation.

Leaf River: Summary

- No significant fish community patterns for boat or backpack collected populations.
- Significant and sizeable annual variation.
- Diversity and evenness measurements found no significant differences between sites.

- 1) No significant differences found in fish communities.
- 2) A possible upstream-downstream break was identified that was not geographically associated with the effluent discharge.
 - 3) More time and data will tell the story

Codorus Creek:

- Bleached Kraft Mill
- •38% at edge of mixing zone

12 Sampling dates:

- •9/98, 11/98
- •3/99, 6/99, 9/99, 11/99
- •3/00, 6/00, 9/00, 11/00
- •3/01, 6/01

- •<u>Total catch</u> = 5,762 fish in 44 taxa (38 species).
- •Most abundant species:
 - •green sunfish (16.2%)
 - spottail shiner (11.1%)
 - Cyprinidae (9.0%)
 - •swallowtail shiner (8.7%)
 - •redbreast sunfish (8.4%).

Codorus Creek: Multivariate Analysis

Codorus Creek: Influential Taxa

 13 out of 44 taxa contributed 95.4% of the pattern (& 86% of the catch)

Codorus Creek: Water Quality Correlation to Fish Community Pattern

- 3 water quality variables correlated 29.2%: temperature, TP, and TN
- Individual variables:
 - Conductivity 21.9%
 - Temperature 21.4%

Codorus Creek: Summary

- Upstream/downstream gradient with all sites significantly different.
- 13 species contributed 95.4% of the fish pattern.
- 3 water quality variables (temperature, TP, and TN) correlated weakly (29.2%) with the fish pattern.
- Conductivity (considered a mill effluent marker) and temperature had 2
 highest individual correlations with the fish community pattern (21.9% and
 21.4%, respectively).
- IBIs, evenness and diversity indices identified the coldwater site. IBIs also differentiated the mainstem sites from the West Branch

Effluent dominated (38%) stream had a gradient in fish communities weakly (<22%) associated with effluent marker.

4 River Summary

- 1. Found a pattern of relative magnitude of response:
 - From the small effluent dominated receiving water with a significant fish community gradient weakly associated with effluent markers,
 - to the larger more typical receiving waters with small to nondetectable fish community gradients associated with effluent marginally or not at all.

2. Traditional measurements of impact (evenness or diversity measurements; IBIs) showed no gradients on any of the rivers, and on the effluent dominated river were only able to identify the coldwater site or stream order.

Where to next?

Highest correlation with WQ was still less than 50%...

Further partitioning:

- will allow a more definitive statement of how much of the pattern is a natural gradient, how much mill effluent driven and how much alternate stressor driven.
- Habitat analysis
- Nutrient analysis
- Fish external health evaluation data analysis.

